
Verification of Bitcoin Script in Agda Using Weakest
Preconditions for Access Control

Fahad Alhabardi1, Anton Setzer, Arnold Beckmann, and Bogdan Lazer
Department of Computer Science

Swansea University

December 7, 2022

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 1 / 26

Table of Contents

1 Background
Smart Contracts
EVM vs Script
Bitcoin Script Language

2 Contribution
3 The Proof Assistant Agda
4 Bitcoin Script

Main example (P2PKH)
5 Operational semantics
6 Hoare logic and weakest pre-conditions

Human-readable weakest pre-condition
Our library

7 Proof of Correctness of the P2PKH script using Step-by-Step approach
8 Conclusion

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 2 / 26

Smart Contracts

What are smart contracts?
Smart contracts are transactions that are defined through software
and executed automatically when conditions in the blockchains are
met.
Smart contracts in cryptocurrency are written in many languages:

§ Script in case of Bitcoin [4, Ch 6].
§ Solidity in case of Ethereum [3, Ch 7].

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 3 / 26

EVM vs Script

Ethereum Virtual Machine is based on Bitcoin Script.
EVM [11]:

§ EVM extends and modifies Bitcoin Script, especially it
‹ adds loops (jumps),
‹ allows calls to other contracts,
‹ adds cost of execution of instructions (gas) to guarantee termination.

Bitcoin Script [11]:
§ without loops.
§ without possibility to calling other contracts.

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 4 / 26

Bitcoin Script Language

The scripting language for Bitcoin is stack-based, and similar to Forth.
The script in Bitcoin has a set of commands called Operation Codes
such as OP_ ADD, OP_ EQUAL etc. . .

Several standards scripts are used in Bitcoin such as the
pay-to-public-key-hash (P2PKH) script.

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 5 / 26

Contribution

Our verification focuses on Pay to Public Key Hash (P2PKH) and
Pay to Multisig (P2MS) [1].
We have introduced an operational semantics of the script commands
used in P2PKH and P2MS, which we have formalised in the Agda
proof assistant and reason about using Hoare triples [1].
Use of weakest pre-condition in order to formalise the correctness of
smart contracts.
Two methodologies for obtaining human-readable weakest
pre-conditions [1].

§ A step-by-step approach (backwards instruction by instruction).
§ Symbolic execution.

To support our verification, we develop a library [1].

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 6 / 26

The proof assistant Agda

A dependently typed functional programming language that expands
the Martin-Löf constructive type theory [9].
Introduced by Ulf Norell [10].
Agda’s features [7, 8, 2, 6] include but not are limited:

§ Inductive and inductive-recursive data types.
§ Pattern matching
§ Completely support for Unicode.
§ Coverage and termination checkers.

The Agda standard library defines the inductive type of natural
numbers as follows:

data N : Set where
zero : N
suc : N → N

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 7 / 26

Cont.

As an example, we define the inductive type of InstructionBasic in
Agda is as follows:

data InstructionBasic : Set where
opEqual opAdd opVerify opDup : InstructionBasic
opMultiSig opCHECKLOCKTIMEVERIFY : InstructionBasic

Another example to define a function in Agda is as follows:

executeStackEquality : Stack → Maybe Stack
executeStackEquality [] = nothing
executeStackEquality (n :: []) = nothing
executeStackEquality (n :: m :: e)

= just ((compareNaturals n m) :: e)

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 8 / 26

Bitcoin Script

Several opcodes have been introduced and formalised in Agda [1].
§ OP_ADD adds the two top elements of the stack together
§ OP_DUP duplicates the top element of the stack.
§ OP_HASH takes the top item of the stack and replaces it with its

hash.
§ OP_EQUAL checks whether the top two elements in the stack are

equal or not.
§ OP_VERIFY invalidates the transaction if the top stack value is false.

The top item on the stack will be removed.

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 9 / 26

Cont.

OP_CHECKSIG hashes the entire transaction, and checks whether
the top two items on the stack form a correct pair of a signature and
a public key for this hash.
OP_CHECKLOCKTIMEVERIFY fails if the time on the stack is
greater than the current time.
Bitcoin scripts that use non-local instructions such as OP_IF,
OP_ELSE, and OP_ENDIF [1].

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 10 / 26

Cont.

Simple example of local instructions:
ă2ą ă3ą OP_ADD ă5ą OP_EQUAL

Initial
state

Push
(2)

2

Push
(3)

2

3

OP_
ADD

5

Push
(5)

5

5

OP_
EQUAL

5

5

Push
the

result

1
or

True

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 11 / 26

Cont.

Simple example of local instructions:
ă2ą ă3ą OP_ADD ă5ą OP_EQUAL

Initial
state

Push
(2)

2

Push
(3)

2

3

OP_
ADD

5

Push
(5)

5

5

OP_
EQUAL

5

5

Push
the

result

1
or

True

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 11 / 26

Cont.

Simple example of local instructions:
ă2ą ă3ą OP_ADD ă5ą OP_EQUAL

Initial
state

Push
(2)

2

Push
(3)

2

3

OP_
ADD

5

Push
(5)

5

5

OP_
EQUAL

5

5

Push
the

result

1
or

True

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 11 / 26

Cont.

Simple example of local instructions:
ă2ą ă3ą OP_ADD ă5ą OP_EQUAL

Initial
state

Push
(2)

2

Push
(3)

2

3

OP_
ADD

5

Push
(5)

5

5

OP_
EQUAL

5

5

Push
the

result

1
or

True

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 11 / 26

Cont.

Simple example of local instructions:
ă2ą ă3ą OP_ADD ă5ą OP_EQUAL

Initial
state

Push
(2)

2

Push
(3)

2

3

OP_
ADD

5

Push
(5)

5

5

OP_
EQUAL

5

5

Push
the

result

1
or

True

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 11 / 26

Cont.

Simple example of local instructions:
ă2ą ă3ą OP_ADD ă5ą OP_EQUAL

Initial
state

Push
(2)

2

Push
(3)

2

3

OP_
ADD

5

Push
(5)

5

5

OP_
EQUAL

5

5

Push
the

result

1
or

True

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 11 / 26

Cont.

Simple example of local instructions:
ă2ą ă3ą OP_ADD ă5ą OP_EQUAL

Initial
state

Push
(2)

2

Push
(3)

2

3

OP_
ADD

5

Push
(5)

5

5

OP_
EQUAL

5

5

Push
the

result

1
or

True

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 11 / 26

Locking and Unlocking Script

The access to bitcoins is protected by an locking script.
In order to unlock it, one needs to provide a unlocking script.
The unlocking script succeeds if

§ when first executing the unlocking script
§ followed by the locking script
§ one obtains a state which fulfils the accept condition accept
§ where acceptpsq means that the top element of the stack is ą 0 i.e.

not false.

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 12 / 26

P2PKH

The P2PKH script consists of a locking script (scriptPubKey) and an
unlocking script (scriptSig) [5].
For clarity:

The OP_Codes for scriptPubKey are as follows:
OP_DUP OP_HASH160 ăpubKeyHashą OP_EQUALVERIFY OP_CHECKSIG

Locking script checks:
§ the top element of the stack is a public key which hashes to

pubKeyHash.
§ the second element on the stack is a signature for the message signed

by the public key.

The scriptSig pushes the required signature and public key onto the stack:
ăsigą ăpubKeyą

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 13 / 26

Operational semantics

The operational semantics of opcodes depends on
Time ˆ Msg ˆ Stack . We define it in Agda as the record type
StackState.

§ Time: there are instructions for checking that a certain amount of time
has passed, and time is used for checking against the current time.

‹ opCHECKLOCKTIMEVERIFY: allows to lock a resource until a certain
amount of time has passed.

§ Msg is the part of the transaction to be signed when a signature is
required.

§ Stack is given as a list of natural numbers.
All opcodes is given as InstructionBasic.

§ Opcodes can fail, for example if there are not enough elements on the
stack as required by the operation.

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 14 / 26

Cont.

The operational semantics of an instruction p : InstructionBasic
J p Ks : StackState → Maybe StackState
The message and time never change, so J p Ks will, if it succeeds, only
change the stack part of it.
As an example, we can define the semantics of opEqual as follows:

J opEqual Ks = liftStackToStackStateTransformer’ executeStackEquality

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 15 / 26

Cont.

executeStackEquality has two cases:
§ Fails and returns nothing if the stack has height ď1,
§ Otherwise compares the two top numbers on the stack, replacing them

by:
‹ 1 in case they are equal,
‹ 0 otherwise.

The component Time of StackState will be used to define the
semantics of opCHECKLOCKTIMEVERIFY.

§ opCHECKLOCKTIMEVERIFY fails if the current time is less then the
top element on the stack.

Msg will be used to define the semantics of opCheckSig.

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 16 / 26

Hoare triple and pre-condition

We define for Φ, Ψ Ď State and p a Bitcoin Script the Hoare triple with
pre-condition

x Φ yØ p x Ψ y :ô
p@s P State1.Φpsq Ñ Ψprr p sssqq

The above expresses that if we fulfil pre-condition Φ and run program
p we obtain a state in which the post-condition Ψ holds.

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 17 / 26

Hoare triple and weakest pre-condition

We define for Φ, Ψ Ď State and p a Bitcoin Script the Hoare triple with
weakest pre-condition

x Φ yØ p x Ψ y :ô
p@s P State1.Φpsq Ñ Ψprr p sssqq

^p@s P State1.Ψprr p sssq Ñ Φpsqq

The above expresses that
(1) If we fulfil pre-condition Φ and run program p we obtain a state in

which the post-condition Ψ holds.
(2) And we obtain this state Ψ only if we had fulfilled pre-condition Φ

before.

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 18 / 26

Hoare triple and weakest pre-condition

We define for Φ, Ψ Ď State and p a Bitcoin Script the Hoare triple with
weakest pre-condition

x Φ yØ p x Ψ y :ô
p@s P State1.Φpsq Ñ Ψprr p sssqq

^p@s P State1.Ψprr p sssq Ñ Φpsqq

If we take Ψ “ accept, and p a locking script, the above means:
§ The locking script only reaches an accepting state starting in state s if

Φpsq is fulfilled.
§ Therefore a successful unlocking script must compute a state s

fulfilling Φ.
§ Therefore who unlocks the script has knowledge of the conditions

defined in Φ.

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 18 / 26

Cont.

For the locking script of P2PKH we compute the weakest precondition Φ,
i.e. a Φ such that

xΦyØ scriptSig xaccepty

holds, and show that

Φpsq

ðñ the two top elements of the stack in s consist of a pubkey hashing
to the pbkh and a corresponding signature.

So the only way to unlock scriptSig is by providing the pubkey and
signature required.

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 19 / 26

Human-readable weakest pre-condition

A person who builds this script needs to look at this condition and
check whether it expresses the conditions the person wants.
Therefore we need a human readable weakest pre-condition.
In order to support that, we use a Step by Step approach.

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 20 / 26

Our library

Develop a library in Agda and prove it [1].
Assuming programs prog1, prog2, prog3, and proofs

proof1 : < precondition >iff prog1 < intermediateCond1 >

means after proof1 pre-condition is weakest pre-condition for prog1 w.r.t. post-condition
intermediateCond1.

proof2 : < intermediateCond1 >iff prog2 < intermediateCond2 >

proof3 : intermediateCond2 <=>p intermediateCond3

<=>p means both conditions are equivalent predicates.

proof4 : < intermediateCond3 >iff prog3 < postcondition >

Then the proof for the Hoare triple for prog1 `̀ pprog2 `̀ prog3q is given as follows:

theorem : < precondition >iff prog1 `̀ (prog2 `̀ prog3) < postcondition >
theorem = precondition <><>〈 prog1 〉〈 proof1 〉

intermediateCond1 <><>〈 prog2 〉〈 proof2 〉
intermediateCond2 <=>〈 proof3 〉
intermediateCond3 <><>〈 prog3 〉〈 proof4 〉e postcondition ‚p

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 21 / 26

Proof of Correctness of the P2PKH script using the
Step-by-Step approach

P2PKH script:

scriptP2PKHb : (pbkh : N) → BitcoinScriptBasic

scriptP2PKHb pbkh = opDup :: opHash :: (opPush pbkh) :: opEqual :: opVerify :: [opCheckSig]

Intermediate conditions accept1, accept2, etc. . .
§ For example:

‹ accepts
1 m t st ô D pbk, sig , st1.st ” pbk :: sig :: st1

^ IsSigned m sig pbk
‹ accepts

2 m t st ô D x , pbk, sig , st1.st ” x :: pbk :: sig :: st1

^ x ą 0 ^ IsSigned m sig pbk

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 22 / 26

Cont.

Proofs correct-1,correct-2, etc. . . of corresponding
correct-1 : < accept1 >iff([opCheckSig]) < acceptState >
correct-2 : < accept2 >iff([opVerify]) < accept1 >

Weakest pre-condition

wPreCondP2PKHs : (pbkh : N) → StackPredicate

wPreCondP2PKHs pbkh time m [] = K

wPreCondP2PKHs pbkh time m (x :: []) = K

wPreCondP2PKHs pbkh time m (pubKey :: sig :: st) =

(hashFun pubKey ” pbkh) ^ IsSigned m sig pubKey

If the stack has hight 0 or 1 then false.
If the stack has hight 2 then hold
if and only if hasFun pubKey ” pbkh ^ IsSigned m sig pubKey

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 23 / 26

Cont.

Prove the weakest pre-condition for the P2PKH script as follows

theoremP2PKH : (pbkh : N) → < wPreCondP2PKH pbkh >iff scriptP2PKHb pbkh < acceptState >
theoremP2PKH pbkh = wPreCondP2PKH pbkh <><>〈 [opDup] 〉〈 correct-6 pbkh 〉

accept5 pbkh <><>〈 [opHash] 〉〈 correct-5 pbkh 〉
accept4 pbkh <><>〈 [opPush pbkh] 〉〈 correct-4 pbkh 〉
accept3 <><>〈 [opEqual] 〉〈 correct-3 〉
accept2 <><>〈 [opVerify] 〉〈 correct-2 〉
accept1 <><>〈 [opCheckSig] 〉〈 correct-1 〉e acceptState ‚p

§ Used single instructions to prove the correctness of P2PKH.
§ Proofs correct1, correct2 etc. . . are done by the following case

ditinctions made in the corresponding verification conditions.

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 24 / 26

Conclusion

Specified the correctness of smart scripts by weakest pre-conditions.
Implemented and tested two methods for developing human-readable
weakest preconditions and proving their correctness.
Applied our approaches to P2PKH and P2MS.
All the above was implemented in Agda.
Next talk:

§ Treat conditional OP_IF in Bitcoin script.
Future work:

§ Develop our approach into a framework for developing smart contracts
that are correct by construction.

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 25 / 26

Thank you for listening.

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 26 / 26

Fahad F. Alhabardi, Arnold Beckmann, Bogdan Lazar, and Anton
Setzer.
Verification of Bitcoin Script in Agda Using Weakest Preconditions for
Access Control.
In 27th International Conference on Types for Proofs and Programs
(TYPES 2021), volume 239 of LIPIcs, pages 1:1–1:25, Dagstuhl,
Germany, 2022. Leibniz-Zentrum für Informatik.
doi: https://doi.org/10.4230/LIPIcs.TYPES.2021.1.

Thorsten Altenkirch, James Chapman, and Tarmo Uustalu.
Relative monads formalised.
Journal of Formalized Reasoning, 7(1):1–43, Jan. 2014.
doi: http://dx.doi.org/10.6092/issn.1972-5787/4389.

Andreas Antonopoulos and Gavin Wood.
Mastering Ethereum. Building smart contracts and Dapps.
O’Reilly Media, December 2018.

Andreas M Antonopoulos.
Mastering Bitcoin: Programming the open blockchain.

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 26 / 26

https://doi.org/10.4230/LIPIcs.TYPES.2021.1
http://dx.doi.org/10.6092/issn.1972-5787/4389

" Second ed. O’Reilly Media, Inc.", 2017.

Bitcoin Community.
Welcome to the Bitcoin Wiki.
Availabe from https://en.bitcoin.it/wiki/Bitcoin, 2010.

Ana Bove, Peter Dybjer, and Ulf Norell.
A brief overview of agda – a functional language with dependent
types.
In Theorem Proving in Higher Order Logics, pages 73–78, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

Agda community.
Agda community.
Availabe from https://agda.readthedocs.io/en/v2.6.2/,
Retrived 10 January 2021.

Nils Anders Danielsson and Ulf Norell.
Parsing Mixfix Operators.
In Implementation and Application of Functional Languages, pages
80–99, Berlin, Heidelberg, 2011. Springer.

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 26 / 26

https://en.bitcoin.it/wiki/Bitcoin
https://agda.readthedocs.io/en/v2.6.2/

doi: https://doi.org/10.1007/978-3-642-24452-0_5.

Per Martin-Löf.
An intuitionistic theory of types: Predicative part.
In Logic Colloquium ’73, volume 80 of Studies in Logic and the
Foundations of Mathematics, pages 73–118. Elsevier, 1975.
doi:https://doi.org/10.1016/S0049-237X(08)71945-1.

Ulf Norell.
Towards a practical programming language based on dependent type
theory.
Phd thesis, Department of Computer Science and Engineering,
Chalmers, Göteborg, Sweden, September 2007.
Availabe from
http://www.cse.chalmers.se/~ulfn/papers/thesis.pdf.

Dejan Vujičić, Dijana Jagodić, and Siniša Ranđić.
Blockchain technology, bitcoin, and ethereum: A brief overview.
In 2018 17th International Symposium INFOTEH-JAHORINA
(INFOTEH), pages 1–6, 2018.

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 26 / 26

https://doi.org/10.1007/978-3-642-24452-0_5
https://doi.org/https://doi.org/10.1016/S0049-237X(08)71945-1
http://www.cse.chalmers.se/~ulfn/papers/thesis.pdf

doi:http://dx.doi.org/10.1109/INFOTEH.2018.8345547.

Fahad Alhabardi Verification of Bitcoin Script in Agda December 7, 2022 26 / 26

https://doi.org/http://dx.doi.org/10.1109/INFOTEH.2018.8345547

	Background
	Smart Contracts
	EVM vs Script
	Bitcoin Script Language

	Contribution
	The Proof Assistant Agda
	Bitcoin Script
	Main example (P2PKH)

	Operational semantics
	Hoare logic and weakest pre-conditions
	Human-readable weakest pre-condition
	Our library

	Proof of Correctness of the P2PKH script using Step-by-Step approach
	Conclusion

