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Abstract—The use of smart contracts is transforming tra-
ditional industry and business practices. It enables the auto-
matic enforcement of contractual terms without the need for
a trusted third party. Smart contracts can automate a variety
of transactions on Blockchain. Despite their numerous benefits,
some challenges, such as security vulnerabilities, still need to be
addressed before smart contracts can be widely adopted.

This paper introduces two models of smart contracts – one
simple and one more complex – using the interactive theorem
prover Agda. This is a step towards converting the previous
work of verifying Bitcoin smart contracts using weakest precon-
ditions [1], [2] to Ethereum’s Solidity-style [3] smart contracts.
Since Ethereum’s contracts are object-oriented, this model is
substantially more complex than Bitcoin’s. We provide models
supporting simple and complex executions, the calling of other
contracts, and functions referring to addresses and messages.
Furthermore, these models also support transferring money to
other contracts and updating specific contracts, and the more
complex model includes gas cost and pure functions.

Index Terms—Ethereum, smart contracts, Agda proof assis-
tant, cryptocurrency, theorem prover, Solidity, Model of solidity-
style, transaction, blockchain

I. INTRODUCTION

Among the most popular emerging technologies at the mo-
ment is blockchain. Its fundamental benefit is that blockchain
technology allows transactions without relying on other au-
thorities such as banks. It also offers data integrity, built-
in authenticity, and user transparency. Blockchain has many
applications, such as cryptocurrencies and smart contracts.

A smart contract is an application on the blockchain initially
suggested by Nick Szabo in 1990 [4]. A smart contract is a
program that is automatically executed when the agreement
conditions between the parties involved as recorded on the
blockchain are fulfilled. By coding their terms, smart contracts
automate agreements. When all conditions are met, the code
enforces the agreement automatically, removing the need for
a third party. This eliminates fraud, mistakes, and process-
ing time. When smart contracts are kept on a blockchain,
trust is assured since the blockchain forbids any changes or
tampering with the smart contract’s conditions [5], provided
the blockchain is not changed by e.g. a 51% attack. Smart
contracts and blockchain technology have the potential to
speed transactions while also making them transparent and
secure without third parties [6].

The simplest example of a smart contract on the blockchain
decentralised network is the buying and selling of products
and services: Buyers deposit money on the blockchain for
sellers. The funds are not paid until the buyer signs again
after receiving the goods. Customers are reimbursed if items
are late [7].

Smart contract codes are immutable [8] when deployed on
the blockchain network. The only way to amend the clauses
of an ongoing smart contract or to withdraw it is by using
functions already provided by the original contract. Thus, the
developers must ensure and verify the security of the code
before publishing it on the blockchain in order to avoid any
errors. Errors in smart contract programs can result in massive
losses, as exemplified by the case of the DAO. The DAO was
a decentralised autonomous organisation whose contracts were
manipulated by cyber criminals once the fund’s market value
had reached US$ 150 million.

In order to avoid any potential risk that may be related to
the use of smart contracts such as errors in the codes of smart
contracts or vulnerability to hacking, one needs to verify the
correctness of smart contracts. This needs to be done before
deploying them on the blockchain network. There are two
ways of achieving this [9]: formal verification and execution
of test cases. Formal verification techniques use mathematical
approaches to prove program correctness. In the context of
smart contracts this can be done by building a formal smart
contract model and showing the smart contracts in question are
correct. In contrast, the execution of test cases runs the code in
order to ensure that for valid inputs, execution terminates and
produces correct outputs, while checking as well for possible
weaknesses or security flaws. As an example of an erroneous
code in smart contracts, consider a smart contract which is
intended to transfer money from one particular account to
another, but because of a coding error, results in the money
being moved to an incorrect account. If this code can be
invoked by a transaction there might be no way to reverse it.
This could have serious consequences for the parties involved
in the contract.

Smart contracts can be written in many different languages,
for instance, high-level languages such as Solidity [3] or
Liquidity [10], intermediate representations such as Simplic-
ity [11], and low-level languages such as SCRIPT [12] or



Ethereum Virtual Machine bytecode (EVM) [13].
In this paper, we present the first step towards verifying

the smart contracts in Ethereum using weakest preconditions.
Weakest preconditions give a precise meaning to a contract
by determining the exact minimal conditions required for
the execution of a contract to end up in a given state, and
therefore state the security of contracts. We have applied this
approach with coauthors to Bitcoin [1], [2], and it is the goal
of the current project to extend this approach to Solidity-
style contracts. In this paper, we take a first step towards this
project by building a model for Solidity-style contracts in the
interactive theorem prover Agda [14] – we plan to carry out
the verification of smart contracts in a future next step using
this model. Because of the object-oriented features of Solidity,
this is a more complex endeavour than the simple model for
Bitcoin Script.

The advantage of using Agda is that it can be used as well as
a functional programming language based on dependent types.
Agda allows to develop programs, reason about them, and
verify them by using the same language, avoiding translation
errors from one language to another.

We build two kinds of models: a simple and a complex
one. The simple model supports basic instructions such as
transferring funds, calling other contracts, updating particular
contracts, looking up the current address, the calling address
and returning the balance of a specific contract. The simple
model does not support the gas cost. In contrast, the complex
model supports all of the features mentioned for the simple
model, and adds gas cost, supports complex instructions, and
deals with pure functions.

The rest of this paper is organised as follows: We introduce
and evaluate related work in Sect. II. In Sect. III, we give
an overview of Agda proof assistant and Ethereum. Then, we
develop the simple and the complex models with examples
for the Solidity-style smart contracts in Sect. IV. Finally, we
conclude with a conclusion and future work in Sect. V.

Git repository. This work has been developed and for-
malised in the proof assistant Agda. All displayed Agda code
in this paper has been generated from type-checked Agda code.
The source code is available at [15].

II. RELATED WORK

This section gives a survey of articles that use a theorem
prover to verify smart contracts. Then we provide some
methods that may be used to verify smart contracts, such
as model checking and symbolic execution. Following that,
we discuss several articles on translating smart contract code
into languages used for program verification. Furthermore, we
present some tools that can be used to verify and analyse
smart contracts. In addition, we provide some projects that
use a novel language to verify smart contracts. Our previous
papers [1], [2] contained a more extensive literature review.

Verification of smart contracts using theorem proving.
Several projects used theorem provers to verify smart con-
tracts. Nielsen et al. [16] proposed a model and executable
specification for the execution of smart contracts in the proof

assistant Coq [17], [18]. Then they used their formalisation to
enable inter-contract communication and generalise existing
accomplished work by enabling the modelling of depth-first
execution blockchains (such as Ethereum) as well as breadth-
first execution blockchains (such as Tezos). They represented
smart contract programs in Gallina, Coq’s functional language.
It is possible to derive certified programs from this language
using other languages, such as Haskell [19] or OCaml [20].
In addition, they also developed a contract for Congress that
is a simpler version of a DAO contract. There are some
restrictions in their work, such as the gas cost is not computed
automatically at the moment with their shallow embedding.

Zakrzewski et al. [21] assessed the practicability of formal-
ising the Solidity programming language [3] and suggested
formalising a subset of Solidity that includes its core data
model and specific distinctive characteristics such as function
modifiers, contracts with storage, and inheritance hierarchy.
They utilised the Coq proof assistant to provide an interpreter
for Solidity that is formalised, with an emphasis on dynamic
semantics. Their work has some limitations, specifically, they
only dealt with a subset of Solidity. Additionally, their work
does not support C99-like block scoping for local variables.
Furthermore, their focus has been on formalization and there-
fore cannot be utilized for smart contract verification.

Andrei [22] has verified Findel [23]-written financial deriva-
tives on blockchain networks. Findel is a declarative financial
domain-specific language (DSL). Next, the author used the
Coq proof assistant to define Findel’s formal semantics and
test it against the Findel test suite. The author then enhanced its
semantics with interactive ways to formalise and verify Findel
contract properties. Finally, the author aimed to ensure no
errors exist in the Findel contracts. The limitation of their work
is when using Coq, the automated proof search techniques
often do not provide proof certificates automatically, even
though they are correct. This limitation can be overcome by
using human-verified proof certificates. Furthermore, Findel
does not support loops and refund mechanisms in case of
errors.

Verification of smart contracts using model checking and
symbolic execution. Mossberg et al. [24] presented Manticore,
a dynamic symbolic execution framework which is open-
source. The Manticore framework was designed to analyse
Ethereum smart contracts and binary code. This framework has
been implemented in Python. Manticore’s architecture is flex-
ible, enabling it to support conventional and unconventional
execution environments. Its API allows users to customise
their analysis. The aim of using Manticore is bug detection
and code verification. Limitations of the Manticore tool are
that it cannot detect various vulnerabilities, including suicide
and integer overflows.

Verification by translation into other languages. Several
efforts aim to translate the smart contract code into languages
used for program verification. Ahrendt et al. [25] focus on
verifying Solidity smart contracts by automatically translat-
ing them into Java. Their Java translation can use verifi-
cation tools and benefit from contract-oriented and object-



oriented paradigms. They validated the translated software us-
ing KeY [26], one of the most potent object-oriented language
verification tools supporting transactions and their abortion.
One limitation of their approach is that is impossible in their
approach to access values such as the current block number
and timestamp, which is possible in Solidity.

Luís et al. [27] developed WhylSon, a tool for deductive
verification of smart contracts written in Michelson, the Tezos
blockchain’s low-level programming language. WhylSon in-
stantly converts a Michelson contract into a WhyML program.
In addition, they built a WhyML shallow-embedding of smart
contract instructions’ axiomatic semantics. Finally, they used
WhylSon to verify smart contracts automatically. One limita-
tion of their work is that they did not include a formalisation
of the internal aspects of cryptographic operations.

Using tools to verify and analyse smart contracts. There
are several different studies to verify and analyse smart con-
tracts using various tools. Nikolić et al. [28] proposed Maian,
a tool for describing and reasoning about trace features using
inter-procedural symbolic analysis and a concrete validator
of the byte-code of smart contracts in Ethereum. Maian has
been implemented in Python. They focused on three defining
characteristics of trace vulnerabilities: discovering contracts
that either hold funds permanently, leak to arbitrary users
or can be terminated by anyone. The Maian tool is limited
to flagged contracts that are actively operating in the forked
Ethereum chain or contracts having available source code.

Grieco et al. [29] introduced Echidna, a static analysis
tool and an open source for Ethereum smart contracts fuzzer.
Echidna has been created using the Haskell programming
language, which supports three key features: user-defined
properties, assertion testing, and gas usage estimate charac-
teristics. Echidna can test smart contracts developed using
Solidity and Vyper [30] programming languages. However,
Vyper is no longer actively maintained at the time of writing
this paper. One limitation of Echidna is, that it works only
on single-core machines. Furthermore, there is no room for
improvement in the accuracy of gas usage measurement at
the moment. Echidna is compatible with various contract
development frameworks such as Truffle and Embark.

Verification of smart contracts written in novel lan-
guages. Sergey et al. [31] developed a new and intermediate-
level programming language called Scilla, designed for safe
smart contracts. Scilla is intended to function as both a compi-
lation target and a standalone programming framework. Scilla
provides robust safety assurances through type soundness,
utilising System F [32] as its fundamental calculus. Imple-
menting smart contracts ensures a clear distinction between
the computational, state-manipulating, and communication as-
pects. This approach mitigates several well-known challenges
from executing contracts in a Byzantine environment and
proposes a framework for conducting lightweight verification
of Scilla programs, which has been demonstrated by applying
two domain-specific analyses on real-world use cases. Scilla
has various limitations since it is a language launched only
recently towards the end of 2019. Therefore, there may be

errors and issues in this language. Furthermore, this language
was created specifically for Zilliqa contracts and has not been
as extensively used as other languages.

Bartoletti et al. [33] proposed a fundamental calculus for
smart contracts called TinySol (Tiny Solidity). This calculus
contains an imperative core, further enhanced with a sole
construct for invoking contracts and effectuating currency
transfers. The present formalisation is a foundation for pro-
viding semantics to the Ethereum blockchain. Moreover, this
approach prevents the particular challenges Solidity faces, such
as variations in invoking other contracts. Some limitations to
their work include the lack of support for a gas mechanism
and the absence of certain features present in Solidity. Further-
more, their work has yet to incorporate recorded timestamps
in the Blockchain.

Crafa et al. [34] introduced Featherweight Solidity. This
calculus formalises the key aspects of the Solidity language
and allows reasoning about the safety qualities of the smart
contract source code. Many problems, such as access to a
function or state variable that does not exist, are discovered
only during run-time, resulting in the stoppage and rolling
back of transactions. They then suggested a type of system
modification that statically catches additional faults, such as
unsafe casts and call-back expressions, and is retro-compatible
with the original Solidity code. Featherweight Solidity was
specifically designed to avoid certain problems that arise inside
smart contracts, and therefore there might still be flaws in
Featherweight Solidity, not yet addressed yet in its design.

III. BACKGROUND – THE PROOF ASSISTANT AGDA AND
ETHEREUM

A. The theorem prover Agda

Agda [14], see as well the books [35], [36], is a theorem
prover based on intensional Martin-Löf type theory [37]. Agda
is very similar to Haskell in both spirit and syntax [38], [39].
Programmers who know Haskell will find Agda easy to learn.
The main difference to Haskell is that Agda is based on
dependent types, and is as well an interactive theorem prover.
Agda [40], [41] additionally features parameterized modules,
mixfix operators, and Unicode characters. Agda uses the
Emacs interface, which provides a development environment
that assists developers in developing and verifying proof code.

The MAlonzo compiler [42]–[44] is used in Agda to trans-
form programs into Haskell and executable code. Agda can
therefore be regarded a programming language that supports
dependent types and functional programming. As such, Agda
is well-suited for creating programs, specifications, and proofs.

In Agda, there is no difference between types expressing
data and types expressing formulas, and both exist in type
signatures and program code. Agda requires all functions to
be total and terminating for type checking [40]. Otherwise type
checking might not terminate, and Agda would be inconsistent.
We give here only a brief introduction, the reader might refer
to our previous papers [1], [2], for a more detailed introduction
into Agda.



As an example, the Agda standard library defines the
inductive type of natural numbers as follows:

data N : Set where
zero : N
suc : N → N

The definition above includes a new type called N with two
constructors, zero and suc.

As an example for Agda’s record type we define an
implementation (Contract) of a simple smart contract, which
contains the fields amount and fun. The field amount rep-
resents the balance (amount of ether) in each contract, and
fun represents the programs executed when a function with a
given name is called with arguments encoded as a message:
In Subsect. IV-B, we explain the data type in more detail. The
definition of Contract is as follows:

record Contract : Set where
field

amount : Amount
fun : FunctionName → Msg

→ SmartContractExec Msg

In Agda, we can define functions using pattern matching
through the elements of (N). An example is

_==b_ : N → N → Bool
zero ==b zero = true
zero ==b suc n = false
suc n ==b zero = false
suc n ==b suc m = n ==b m

The Boolean equality function decides whether two naturals
numbers n m are equal. It is defined by recursion on n and
m; we use pattern matching to decide which of the 4 cases
applies, where the last one is a recursive call.

B. Ethereum

Ethereum is the first of the second generation of cryp-
tocurrencies and the most prominent example of a blockchain
platform fully supporting smart contracts. Vitalik Buterin [13]
launched Ethereum in 2013 with the intention of overcoming
several shortcomings shown by Bitcoin’s scripting language.
The primary contribution is full Turing completeness: Smart
contracts in Ethereum are capable of supporting all forms of
computing, including loops and calling of other contracts.

Ethereum is a kind of blockchain that includes a Turing-
complete programming language as part of its core function-
ality. Anybody can deploy smart contracts. They are essentially
a collection of functions, which can be called together with
their arguments. In addition contracts have instance variables,
which define its state. The writer of the smart contracts can
add conditions required for the successful execution of its
functions. Smart contracts allow anybody to design their own
rules for ownership, forms of transactions and state transition
mechanisms [13].

In the past, Ethereum was based on a consensus mechanism
known as proof of work [13]. It is now built on proof of

stake, which is, compared proof-of-work, more secure, uses
less energy, and is more suited for adopting new scaling
solutions [45]. Validators are compensated in cryptocurrency
for their labour in processing transactions, executing smart
contracts and contributing to the creation of blocks [46].

Every node in the Ethereum network operates under the
Ethereum Virtual Machine (EVM), a virtual distributed com-
puter designed specifically for the Ethereum network. This
machine is responsible for carrying out the commands given
by the network. The EVM executes EVM code, which is a
machine language for smart contracts. Smart contracts written
in high level languages such as Solidity are compiled into
the EVM. After being converted into EVM code, the smart
contracts are subsequently executed by the network’s nodes.
Solidity [3] is now among the most popular programming
languages for writing smart contracts in Ethereum. Solidity is a
high-level language that implements user interactions, provides
the capability for groups that use different blockchains to
share information and value and overcomes the limitations
mentioned in the Bitcoin scripting language [47].

The state of Ethereum comprises accounts, and each account
has a 20-byte address in addition to state transitions. The
global state is a mapping between addresses and account
statuses [13]. There are two kinds of accounts that may be held
on Ethereum: externally owned accounts, which are managed
by private keys, and contract accounts, which are controlled
by deployed contract code [13].

There are four components that compose an Ethereum
account [13], [48]: The first is a nonce, which is the number of
transactions dispatched from a given address, or the number of
contracts created by an account. Its purpose is to prevent replay
attacks, where a transaction would be identically repeated by
an adversary. The second is the balance, which represents the
number of Wei owned by the specified address. Wei is ETH’s
smallest unit of currency, and 1 Ether equals 1018 Wei. The
balance is as well used to pay transaction fees. The third is
the contract code hash, namely the Keccak-256 hash of the
Ethereum Virtual Machine (EVM) code associated with an
account. This code is executed whenever the account receives
a message call at its address. The last is a storage root, referred
to as the 256-bit root node hash in a Merkle Patricia tree
(commonly referred to as tries), a data structure used for safe
and efficient data storage and retrieval. This tree is responsible
for encoding the storage contents of an account.

The following are some of the fundamental elements that
are included in every transaction in Ethereum [13]: the field
that provides the signature of the sender of the transaction, the
field that identifies the destination address of the transaction,
the field that defines the bytecode of the smart contract or the
parameter that is sent in when calling the contract, startgas,
gasprice values, and data fields that are optional. Startgas and
gasprice [13] restrict the amount of computation a transaction
may do. The maximum number of computing steps that a
transaction may perform is specified by startgas, and the
transaction will fail if it exceeds its startgas limit. This solve
the problem that the EVM is Turing complete, and it is



undecidable whether a program in a Turing complete language
terminates. This would cause problems since validators of
transaction have to execute transactions which includes the
execution of smart contracts, without knowing whether they
terminate. By adding the limit set by startgas, termination
of execution is enforced, by stopping execution when the
gas limit is exceeded, solving this problem. Startgas and
gasprice [13] aid as well in preventing denial-of-service at-
tacks. The gasprice is the charge the sender pays for each unit
of gas used. The greater the gasprice, the greater the likelihood
that a transaction will be mined rapidly. The Ethereum fee
structure ensures that attackers pay for the resources they
utilise. Computation, bandwidth, and storage are all part of
this. As a result, if a transaction requires more resources, the
gas cost will be greater.

A transaction modifies the Ethereum blockchain’s state
using the deterministic Ethereum state transition function [13].
The function begins by confirming the transaction’s validity,
including checking the signature and nonce. If the transaction
is correct, then the function subtracts the transaction fee from
the sender’s account balance and increments the nonce. The
receiver receives the required amount of Ether after paying the
transaction cost per byte. The recipient’s account is created if
it doesn’t exist. The contract code is run if the recipient’s
account is a contract. The state transition function returns all
state changes except the miners’ payment fees if the sender
doesn’t have enough Ether or the code execution runs out of
gas.

IV. MODELLING OF SOLIDITY SMART CONTRACTS IN
AGDA

In this section, we develop a simple and a complex model
of Solidity-style smart contracts. First, we provide a brief
overview of these models in Subsect. IV-A. Then, we explain
the simple model in Subsect. IV-B and the complex model in
Subsect. IV-C. Both are implemented in Agda.

A. Overview on simple and complex models

This subsection will explain the functioning of simple and
complex models in the ledger. As shown in Figure 1, the ledger
comprises various contracts, including Contract 1, Contract
n, and so on. The complex model’s Contract 1 comprises
four fields, namely the contract balance (amount), function
name (fun), pure function (purefunction), and pure function
cost (purefunctionCost). In contrast, the simple model only
has two fields, i.e., amount and fun, as it deals with simple
instructions. As an illustration of how it works, Contract 1 will
use the command call to call Contract n with the parameters
(funname, msg). Contract n might call other contracts as well.
Once Contract n returns the result using the command return,
Contract 1 will continue execution which might result in calls
to other contracts, until, if it terminates, it will return its result
to the caller using the statement "return result (msg)". During
this process, it will calculate as we the amount of gas used,
and abort execution in case it runs out of gas.

Fig. 1. Ledger in complex model

In addition, when returning the result to Contract 1, we
utilize the state execution function to update the ledger state,
as shown in Figure 2. The complex model comprises nine
fields, ledger, executionStack, initialAddr, . . . , msgevalState.
Conversely, the simple model has only the first five of those
fields: ledger, executionStack, lastCallAddress, calledAddress
and nextstep.

Fig. 2. Execution of function in complex model

In the following subsection, we explain the simple model
in IV-B and complex model in IV-C in more detail.

B. Simple model of Solidity smart contracts in Agda

In this subsection, we develop a simple model of Solidity
smart contracts, which supports basic executions such as
updating smart contracts, transferring money, calling other
smart contracts, obtaining the balance of each smart contract,
but does not provide an explicit cost of gas.

In the Ethereum virtual machine, one may call functions
by passing data to them as arguments. These arguments will
then be serialise as a byte array, which is essentially a natural
number. In order to provide an abstraction from this in our
model, we have defined a type for messages (keyword data).
Messages are inductively defined as natural numbers, or lists
of messages. Messages allow to encode the elements of data
types of Solidity. For instance, arrays are encoded as lists of



messages where each message encodes an element of the array.
Maps are encoded as lists of pairs of messages, where pairs
are lists of length 2 which represent the key and the element
it is mapped to, both encoded as messages.

data Msg : Set where
nat : N → Msg
list : List Msg → Msg

Then, we define the execution stack, which is the list of
currently open function calls. It is list of ExecStackEl, where
ExecStackEl is defined as a record type as follows:

record ExecStackEl : Set where
field

lastCallAddress : Address
calledAddress : Address
continuation : Msg

→ SmartContractExec Msg

ExecStackEl has three fields: lastCallAddress which gives
the address which made the last call; calledAddress, the
address which was called; continuation; which determines the
next execution step to be executed depending on the message
returned after the call to the function has been completed.

The ExecutionStack is a stack (or list) of ExecStackEl,
listing the calls which are still open:

ExecutionStack = List ExecStackEl

We now define mutually SmartContractExec, which de-
termines the next step in the execution of a smart command,
CCommands, which is a command to be executed, and
CResponse, which determines the answer returned, once a
command is executed, as follows:

data SmartContractExec (A : Set) : Set where
return : A → SmartContractExec A
error : ErrorMsg → SmartContractExec A
exec : (c : CCommands)

→ (CResponse c → SmartContractExec A)
→ SmartContractExec A

data CCommands : Set where
transferc : Amount → Address

→ CCommands
callc : Address → FunctionName

→ Msg → CCommands
updatec : FunctionName

→ (Msg → SmartContractExec Msg)
→ CCommands

CResponse : CCommands → Set
CResponse (transferc amount addr) = ⊤
CResponse (callc addr fname msg) = Msg
CResponse (updatec fname fdef) = ⊤

SmartContractExec has three constructors: return, which
will cause the execution to end and return its argument;

error, which will cause execution to abort and return an error
message; exec, which will execute a command, and depending
on the response returned will continue execution. The function
exec refers to the following CCommands which can be
executed:

• transferc transfers a certain amount of money to a
specific address;

• callc makes a recursive call to a function at a given
address, with argument given by an element of Msg;

• updatec updates a function definition in the current
contract;

In the full version of the code [15] we have as well
commands for looking up the current address, the call address,
and the balance of any address.

In case of transferc, the CResponse is the trivial type
⊤(having one element), in case of callc, the answer is the
result returned by the function call executed, represented as an
element of Msg, and in the case of updatec, it is an element
of ⊤. The CResponse for the other commands (looking up
the current address, the called address, and getting the balance
of any address), are available at [15].

Furthermore, we define Contract as given by the balance
and the functions to be executed, and a Ledger as a function
which determines for each address the Contract at that address
(with default values used for addresses which are not used):

record Contract : Set where
field

amount : Amount
fun : FunctionName → Msg

→ SmartContractExec Msg

Ledger = Address → Contract

The state of executing a smart contract StateExecFun
consists of four fields: the current ledger (ledger), the ex-
ecution stack (executionStack), the address which made
the last call (lastCallAddress), the last address which was
called (calledAddress), and the current code to be executed
(nextstep):

record StateExecFun : Set where
field

ledger : Ledger
executionStack : ExecutionStack
lastCallAddress : Address
calledAddress : Address
nextstep : SmartContractExec Msg

Next we define a function stepEF, which executes one step
of the execution of a contract, and a function stepEFntimes,
which iterates stepEF n times. stepEFntimes can be re-
garded as execution with a first very simple form of gas limit
(given by n). The types of those functions are as follows (the
full definition can be found in the git repository [15]):

stepEF : Ledger → StateExecFun
→ StateExecFun



stepEFntimes : Ledger → StateExecFun
→ N → StateExecFun

As an example, we create first the function constantFun,
which returns the same number.

const : N → Msg → SmartContractExec Msg
const n msg = return (nat n)

Constant functions represent variables, where we look up
their content by applying them to the message nat 0.

We build now a ledger which at address 1 has a balance
40 and a contract implementing a simple counter. The counter
is represented by the variable "f1", and a function "g1",
which increments the variable represented by "f1" by 1.
The function "f1" is initialised with the constant function
returning 0 (representing a variable initialised as 0). Function
"g1" looks up the current address (which returns 1), looks up
the content of variable "f1" by applying it to nat 0. Then it
makes an anonymous case distinction on the result (syntax λ{
· · · }): if the result was nat n, it updates "f1" to the constant
function returning suc n; otherwise it raises an error. For other
addresses, the amount will be 0, function names and arguments
will return an error with message ("Undefined"). The same
applies to other functions at address 1:

testLedger 1 .amount = 40
testLedger 1 .fun "f1" m = const 0 (nat 0)
testLedger 1 .fun "g1" m =

exec currentAddrLookupc λ addr →
exec (callc addr "f1" (nat 0))
λ{(nat n) → exec (updatec "f1" (const (suc n)))

λ _ → return (nat (suc n));
_ → error (strErr

"f1 returns not a number")}
testLedger ow .amount = 0
testLedger ow .fun ow’ ow”

= error (strErr "Undefined")

C. Complex model of Solidity smart contracts in Agda

This subsection extends the simple model to a more com-
plex one. Similar to the simple model, the complex model has
structures and data types such as Msg and Ledger, and func-
tions such as stepEF, stepEFntimes, and ExecutionStack.
The complex model has more complex operation commands,
such as updating and calling pure functions similar to the
Solidity language, where it allows to redefine a pure function
by referring to the full previous instance of that function. This
allows to model maps, which in Solidity are finite functions
from keys to a target type, more directly rather than encoding
them as lists of pairs of messages. The complex model also
has added gas cost, and a better recording of error messages.

We redefine the elements of the smart contract execution
stack (ExecStackEl) by adding 3 more fields:

• costCont, the gas cost for continuation depending on the
message returned when the current call is finished;

• funcNameexecStackEl, the last function called;

• msgexecStackEl, the argument with which the last
called function was called.

The last two elements are used for displaying debugging
information in case of an error.

The definition of ExecStackEl is as follows (we omit the
fields defined in the simple model):

record ExecStackEl : Set where
field
- fields from the simple model
costCont : Msg → N
funcNameexecStackEl : FunctionName
msgexecStackEl : Msg

Similar to the simple model, we redefine mutually SmartCon-
tractExec, CCommands, and CResponse, as follows:

data SmartContractExec (A : Set) : Set where
return : N → A → SmartContractExec A
error : ErrorMsg → DebugInfo

→ SmartContractExec A
exec : (c : CCommands) → (CResponse c → N)

→ (CResponse c → SmartContractExec A)
→ SmartContractExec A

data CCommands : Set where
- constructors from the simple model
- (excluding updatec)

callPure : Address → FunctionName
→ Msg → CCommands

updatec : FunctionName
→ ((Msg → MsgOrError)
→ (Msg → MsgOrError))
→ ((Msg → MsgOrError)
→ (Msg → N) → Msg → N)
→ CCommands

raiseException : N → String → CCommands

CResponse : CCommands → Set
- equations from the simple model
- (excluding updatec)
CResponse (callPure addr fname msg) = MsgOrError
CResponse (updatec fname fdef cost) = ⊤
CResponse (raiseException _ str) = ⊥

In SmartContractExec, we add to return an extra argument
N (natural number). This is the cost for executing the return
statement, which depends on the size of the return value.
In case of error, we add debug information (DebugInfo),
which includes four fields: the address which made the call,
the current address, the last function that was called, and the
argument with this the function was called. In case of exec,
we add the response cost for each command (CResponse
c → N). In the operations command (CCommands), we
define two extra commands, which are callPure, which we
use to call pure functions, and raiseException for raising an
exception. We use as well a slightly different definition of



updatec, which we use to update pure functions and add an
extra argument to calculate the pure function cost
((Msg → MsgOrError) → (Msg → N) → Msg → N)).
In the definition of CResponse, we add two more cases. In
the case of callPure, it will return a message or error. In the
case of raiseException, it is an empty type, since there is no
continuation. The case of updatec has different arguments,
but returns as in the simple model ⊤. The other commands
and responses are the same as in the simple model and the
full definition is available at [15].

Also, we redefine the complex implementation of smart
contracts (Contract) by adding two extra fields, pure func-
tion (purefunction) and cost of executing the pure function
(purefunctionCost). Pure functions are as in Solidity func-
tions which don’t call other functions (in our setting variables
are represented by functions). In Solidity, it does not cost any
gas when called externally; if called from an internal function,
it will cost gas. Contract has the following additional fields,
with the remaining fields defined as in the simple model:

record Contract : Set where
field
- fields from the simple model
purefunction : FunctionName

→ Msg → MsgOrError
purefunctionCost : FunctionName

→ Msg → N

In addition, we redefine the state of execution
(StateExecFun) for the complex model by adding four
more fields:

• initialAddr is the address which initiated the current
sequence of calls;

• gasLeft is how much gas we have left in the next
execution step;

• funNameevalState is the function name which was
called; this will be used as debug information in case
of an error;

• msgevalState is the argument with which the function
name was called.

The definition of StateExecFun (with the remaining fields as
in the simple model) is as follows:

record StateExecFun : Set where
field
- fields from simple model
initialAddr : Address
gasLeft : N
funNameevalState : FunctionName
msgevalState : Msg

To deal with the gas cost in the complex model, we define
deductGas, which we use to deduct gas from the state
execution function (StateExecFun), not from the ledger.

deductGas : (statefun : StateExecFun)
(gasDeducted : N)
→ StateExecFun

Then, we define stepEFgasAvailable, which shows the gas
available in the smart contract code, and stepEFgasNeeded,
which determines the gas needed for the execution of smart
contract code.

stepEFgasAvailable : StateExecFun → N

stepEFgasNeeded : StateExecFun → N

We define an auxiliary function stepEFAuxCompare in
order to compare stepEFgasAvailable and stepEFgas-
Needed:

stepEFAuxCompare : (oldLedger : Ledger)
→ (statefun : StateExecFun)
→ OrderingLeq (stepEFgasNeeded statefun)

(stepEFgasAvailable statefun)
→ StateExecFun

stepEFAuxCompare has two cases:
• If the gas available is greater than the gas needed, it will

deduct the gas, process the transaction, and update the
ledger.

• If the gas available is less than the gas needed, we
have run out of gas. It will update the ledger to be the
old ledger but with gas deducted, and abort execution
reporting an out of gas error.

We create an example of a simple voting contract with gas
cost included to demonstrate the complex model code. For
the contract itself, we have four fields: amount (amount),
function name (fun), pure function (purefunction), and
pure function cost (purefunctionCost). For address 1, the
amount is 100, and we have three functions ("addVoter",
"deleteVoter", and "vote"). In addition we have two
pure functions ("checkVoter" and "counter"). The
explanation of the three functions is as follows:

• "addVoter" updates the pure function
("checkVoter") by setting it to true for the
new voter.

• "deleteVoter" does the same, but setting it to false
for the deleted voter.

• "vote" first looks up the calling address and calls the
pure function ("checkVoter"), to check whether the
voter is allowed to vote (where (nat 0) represents false
and (nat (suc n)) represents true). Then it calls voteAux
to make a case distinction on this decision. If the voter is
allowed to vote it increments the counter (pure function
("counter")) by 1. Otherwise it will return an error.
The type of voteAux is as follows:

voteAux : Address → MsgOrError
→ SmartContractExec Msg

voteAux will in case the message (result of checking whether
the voter is allowed to vote) represents true delete the voter,
lookup the counter, and if it was (nat n) increment it by 1. In
all other cases, it raises an error.



The pure function "checkVoter" is initialised to 0,
meaning no voter is allowed to vote, and "counter" is
initialised to 0. For other addresses, the amount will be 0,
and all pure functions and functions not specified before will
return an error message ("Undefined") with debugging
information As well for other pure functions the costs will
be 1. In our contract, for brevity, we have only one candidate
to vote for, like in the former GDR. In the git repository [15],
we have in addition a more democratic example which allows
to vote for multiple candidates (see guidelines.agda).

testLedger 1 .amount = 100
testLedger 1 .fun "addVoter" msg

= exec (updatec "checkVoter"
(addVoterAux msg) λ oldFun oldcost msg → 1)
(λ _ → 1) λ _ → return 1 msg

testLedger 1 .fun "deleteVoter" msg
= exec (updatec "checkVoter"

(deleteVoterAux msg) λ oldFun oldcost msg → 1)
(λ _ → 1) λ _ → return 1 msg

testLedger 1 .fun "vote" msg
= exec callAddrLookupc (λ _ → 1)
λ addr → exec (callPure addr "checkVoter"

(nat addr))
(λ _ → 1) λ check → voteAux addr check

testLedger 1 .purefunction "counter" msg
= theMsg (nat 0)

testLedger 1 .purefunction "checkVoter" msg
= theMsg (nat 0)

testLedger 1 .purefunctionCost "checkVoter" msg
= 1

testLedger 3 .amount = 100
testLedger ow .amount = 0
testLedger ow .fun ow’ ow”

= error (strErr "Undefined")
〈 ow » ow · ow’ [ ow” ]〉

testLedger ow .purefunction ow’ ow”
= err (strErr "Undefined")

testLedger ow .purefunctionCost ow’ ow” = 1

We have implemented functions which compute the result-
ing ledger and the result returned after executing a function
and functions which compute the result returned by a pure
function. These functions are defined recursively. In order
to guarantee termination, we add a variable numberOfSteps
which is initially set to the gas assigned and counted down
in each execution step. Furthermore, we guarantee that the
gas used and deducted in each execution step is at least one
(technically, we achieve this by adding 1 to the gas specified).
We maintain (because gas is reduced by at least 1 in each step)
the invariant that the gas left is always ≤ numberOfSteps, so
when the numberOfSteps is 0, and a execution step is to be
carried out, there is no gas left, and one obtains an out-of-gas
error. Therefore, the program passes the termination checker
of Agda, with all necessary proofs carried out in Agda. See
the executed voting example in the file (guidelines.agda) of
the git repository [15].

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented the first step towards
verifying smart contracts in Ethereum using weakest precon-
ditions. This will give a precise meaning to a contract. We
have developed smart Solidity-style contracts in two models.
The first is the simple model, which includes features such as
dealing with simple executions, returning the available balance
in each contract, calling other smart contracts, transferring
money to other contracts, and looking up the current and
calling addresses. The simple model does not include gas costs
at this stage. The second is the complex model, which provides
additional features, such as gas cost, more complex executions,
calling and updating pure functions, and calculating the pure
function cost. We have built these models using the interactive
theorem prover Agda. Agda is unique that it allows to write
programs and verify them in the same language. This avoids
translation errors from one program to another.
In future work, we will build an interactive program in Agda
which executes simple and complex models. Then, we will
verify the simple and complex models of smart Solidity-style
contracts using the weakest preconditions [1], [2] to specify
the criteria necessary to carry out a particular transfer in a
smart contract. The ultimate goal is to have solidity contracts
accompanied with a proof that it is correct w.r.t. weakest
preconditions and therefore fulfils security guarantees for its
execution.
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